Lead Induced Toxicity, Detoxification and Bioremediation 203
Jusselme, M. D., F. Poly, E. Miambi, P. Mora, M. Blouin, A. Pando and C. Rouland-Lefèvre. 2012. Effect of
earthworms on plant Lantana Camara Pb-uptake and on bacterial communities in root-adhering soil. Sci.
Total Environ. 416: 200–207.
Kalita, D. and S. R. Joshi. 2017. Study on bioremediation of lead by exopolysaccharide producing metallophilic
bacterium isolated from extreme habitat. Biotechnol. Rep. 16: 48–57.
Kandziora-Ciupa, M., R. Ciepał, A. Nadgórska-Socha and G. Barczyk. 2013. A comparative study of heavy metal
accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted
areas. Environ. Sci. Pollut. Res. 20(7): 4920–4932.
Kang, C. H., Y. J. Kwon and J. S. So. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol.
Eng. 89: 64–69. doi: 10.1016/j.ecoleng.2016.01.023.
Khan, I., M. Iqbal, M. Y. Ashraf, M. A. Ashraf and S. Ali. 2016. Organic chelants-mediated enhanced lead (Pb) uptake
and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.).
J. Hazard. Mater. 317: 352–361.
Ksheminska, H., D. Fedorovych, T. Honchar, M. Ivash and M. Gonchar. 2008. Yeast tolerance to chromium depends
on extracellular chromate reduction and Cr (III) chelation. Food Technol. Biotechnol. 46(4): 419–426.
Kumar, A., H. Touseef, C. Susmita, D. K. Maurya, M. Danish and S. A. Farooqui. 2021. Microbial remediation and
detoxification of heavy metals by plants and microbes. pp. 589–614. In: M. Shah, S. Rodriguez-Couto and
K. Mehta [eds.]. The Future of Effluent Treatment Plants, Elsevier, SBN 9780128229569.
Kumar, V. V. 2017. Mycoremediation: a step toward cleaner environment. pp. 171–187. In: R. Prasad [ed.].
Mycoremediation and Environmental Sustainability. Springer International Publishing: Cham, Switzerland.
Kumari, S. and S. Das. 2019. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium
Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb (II) resistance and bioremediation.
Environ. Sci. Pollut. Res. (28): 28763–28774.
Kumpiene, J., L. Giagnoni, B. Marschner, S. Denys, M. Mench, K. Adriaensen, J. Vangronsveld, M. Puschenreiter
and G. Renella. 2017. Assessment of methods for determining bioavailability of trace elements in soils: a
review. Pedosphere. 27(3): 389–406.
Kunito, T., K. Saeki, K. Nagaoka, H. Oyaizu and S. Matsumoto. 2001. Characterization of copper-resistant bacterial
community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37(2): 95–102.
Kushwaha, A., N. Hans, S. Kumar and R. Rani. 2018. A critical review on speciation, mobilization and toxicity of
lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 147: 1035–1045.
Kushwaha, A., R. Rani, S. Kumar, T. Thomas, A. A. David and M. Ahmed. 2017. A new insight to adsorption
and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium
Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ. Sci. Pollut. Res. 24: 10652–10661.
Lakkireddy, K. and U. Kües. 2017. Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction
with low risk of microbial contaminations. AMB Express. 7(1): 1–22.
Laxman, R. S. and S. More. 2002. Reduction of hexavalent chromium by Streptomyces griseus. Minerals Eng. 15(11):
831–837.
Lee, Y. C. and S. P. Chang. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora
filamentous macroalgae. Bioresour. Technol. 102(9): 5297–5304.
Lenka, S., S. Rajendiran and V. Coumar. 2016. Impact of fertilizers use on environmental quality. In: National Seminar
on Environmental Concern for Fertilizer Use in Future. Krishi Viswavidyalaya, Kalyani.
Li, X., L. Zhang and G. Wang. 2014. Genomic evidence reveals the extreme diversity and wide distribution of the
arsenic-related genes in Burkholderiales. PLoS One. 9(3): e92236.
Li, X., D. Meng, J. Li, H. Yin, H. Liu and X. Liu. 2017. Response of soil microbial communities and microbial
interactions to long-term heavy metal contamination. Environ. Pollut. 231: 908–917.
Liu, Z. and F. S. Zhang. 2009. Removal of lead from water using biochars prepared from hydrothermal liquefaction
of biomass. J. Hazard. Mater. 167: 933–939.
Luna, J. M., R. D. Rufino and L. A. Sarubbo. 2016. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy
metal remediation properties. Process Saf. Environ. Prot. 102: 558–566.
Mahdavian, K., S. M. Ghaderian and M. Torkzadeh-Mahani. 2017. Accumulation and phytoremediation of Pb, Zn,
and Ag by plants growing on Koshk lead–zinc mining area, Iran. J. Soils Sediments 17(5): 1310–1320.
Mani, D., C. Kumar, N. K. Patel and D. Sivakumar. 2015. Enhanced clean-up of lead-contaminated alluvial soil
through Chrysanthemum indicum L. Int. J. Environ. Sci. Technol. 12(4): 1211–1222.
Manzoor, M., A. Rathinasabapathi, L. M. De Oliveira, E. da Silva, F. Deng, C. Rensing, M. Arshad, G. Iram,
P. Xiang and L. Q. Ma. 2019. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant
growth of Pteris vittata in Pb-contaminated soil. Sci. Total Environ. 660: 18–24. https://doi.org/10.1016/j.
scitotenv.2019.01.013.